Brownian Motions of Ellipsoids
نویسندگان
چکیده
منابع مشابه
Bouncing skew Brownian motions
We consider two skew Brownian motions, driven by the same Brownian motion, with different starting points and different skewness coefficients. In [13], the evolution of the distance between the two processes, in local time scale and up to their first hitting time is shown to satisfy a stochastic differential equation with jumps. The jumps of this S.D.E. are naturally driven by the excursion pro...
متن کاملNonintersecting Planar Brownian Motions
In this paper we construct a measure on pairs of Brownian motions starting at the same point conditioned so their paths do not intersect. The construction of this measure is a start towards the rigorous understanding of nonintersecting Brownian motions as a conformal eld. Let B 1 ; B 2 be independent Brownian motions in R 2 starting at distinct points on the unit circle. Let T j r be the rst ti...
متن کاملIntroduction to Brownian Motions
This paper aims to present some basic facts about Brownian Motions. It will assume a basic familiarity with probability and random variables. It will begin by defining Brownian Motion in one dimension on the dyadic rationals using a countable number of random variables and then proceed to generalize this to the real line using a continuity argument. Some other consequences of continuity will be...
متن کاملCoalescence of skew brownian motions
© Springer-Verlag, Berlin Heidelberg New York, 2001, tous droits réservés. L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impressio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1986
ISSN: 0002-9947
DOI: 10.2307/2000214